input_common: Rewrite gc_adapter

This commit is contained in:
german77 2021-09-20 17:22:07 -05:00 committed by Narr the Reg
parent fa8e23b842
commit 395e9a449d
8 changed files with 852 additions and 831 deletions

View File

@ -1,4 +1,6 @@
add_library(input_common STATIC
drivers/gc_adapter.cpp
drivers/gc_adapter.h
drivers/keyboard.cpp
drivers/keyboard.h
drivers/mouse.cpp
@ -23,10 +25,6 @@ add_library(input_common STATIC
motion_from_button.h
motion_input.cpp
motion_input.h
gcadapter/gc_adapter.cpp
gcadapter/gc_adapter.h
gcadapter/gc_poller.cpp
gcadapter/gc_poller.h
sdl/sdl.cpp
sdl/sdl.h
tas/tas_input.cpp

View File

@ -2,47 +2,103 @@
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <chrono>
#include <thread>
#include <fmt/format.h>
#include <libusb.h>
#include "common/logging/log.h"
#include "common/param_package.h"
#include "common/settings_input.h"
#include "input_common/gcadapter/gc_adapter.h"
#include "common/thread.h"
#include "input_common/drivers/gc_adapter.h"
namespace GCAdapter {
namespace InputCommon {
Adapter::Adapter() {
if (usb_adapter_handle != nullptr) {
class LibUSBContext {
public:
explicit LibUSBContext() {
init_result = libusb_init(&ctx);
}
~LibUSBContext() {
libusb_exit(ctx);
}
LibUSBContext& operator=(const LibUSBContext&) = delete;
LibUSBContext(const LibUSBContext&) = delete;
LibUSBContext& operator=(LibUSBContext&&) noexcept = delete;
LibUSBContext(LibUSBContext&&) noexcept = delete;
[[nodiscard]] int InitResult() const noexcept {
return init_result;
}
[[nodiscard]] libusb_context* get() noexcept {
return ctx;
}
private:
libusb_context* ctx;
int init_result{};
};
class LibUSBDeviceHandle {
public:
explicit LibUSBDeviceHandle(libusb_context* ctx, uint16_t vid, uint16_t pid) noexcept {
handle = libusb_open_device_with_vid_pid(ctx, vid, pid);
}
~LibUSBDeviceHandle() noexcept {
if (handle) {
libusb_release_interface(handle, 1);
libusb_close(handle);
}
}
LibUSBDeviceHandle& operator=(const LibUSBDeviceHandle&) = delete;
LibUSBDeviceHandle(const LibUSBDeviceHandle&) = delete;
LibUSBDeviceHandle& operator=(LibUSBDeviceHandle&&) noexcept = delete;
LibUSBDeviceHandle(LibUSBDeviceHandle&&) noexcept = delete;
[[nodiscard]] libusb_device_handle* get() noexcept {
return handle;
}
private:
libusb_device_handle* handle{};
};
GCAdapter::GCAdapter(const std::string input_engine_) : InputEngine(input_engine_) {
if (usb_adapter_handle) {
return;
}
LOG_INFO(Input, "GC Adapter Initialization started");
const int init_res = libusb_init(&libusb_ctx);
libusb_ctx = std::make_unique<LibUSBContext>();
const int init_res = libusb_ctx->InitResult();
if (init_res == LIBUSB_SUCCESS) {
adapter_scan_thread = std::thread(&Adapter::AdapterScanThread, this);
adapter_scan_thread =
std::jthread([this](std::stop_token stop_token) { AdapterScanThread(stop_token); });
} else {
LOG_ERROR(Input, "libusb could not be initialized. failed with error = {}", init_res);
}
}
Adapter::~Adapter() {
GCAdapter::~GCAdapter() {
Reset();
}
void Adapter::AdapterInputThread() {
void GCAdapter::AdapterInputThread(std::stop_token stop_token) {
LOG_DEBUG(Input, "GC Adapter input thread started");
Common::SetCurrentThreadName("yuzu:input:GCAdapter");
s32 payload_size{};
AdapterPayload adapter_payload{};
if (adapter_scan_thread.joinable()) {
adapter_scan_thread.join();
}
adapter_scan_thread = {};
while (adapter_input_thread_running) {
libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(),
while (!stop_token.stop_requested()) {
libusb_interrupt_transfer(usb_adapter_handle->get(), input_endpoint, adapter_payload.data(),
static_cast<s32>(adapter_payload.size()), &payload_size, 16);
if (IsPayloadCorrect(adapter_payload, payload_size)) {
UpdateControllers(adapter_payload);
@ -52,19 +108,20 @@ void Adapter::AdapterInputThread() {
}
if (restart_scan_thread) {
adapter_scan_thread = std::thread(&Adapter::AdapterScanThread, this);
adapter_scan_thread =
std::jthread([this](std::stop_token token) { AdapterScanThread(token); });
restart_scan_thread = false;
}
}
bool Adapter::IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payload_size) {
bool GCAdapter::IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payload_size) {
if (payload_size != static_cast<s32>(adapter_payload.size()) ||
adapter_payload[0] != LIBUSB_DT_HID) {
LOG_DEBUG(Input, "Error reading payload (size: {}, type: {:02x})", payload_size,
adapter_payload[0]);
if (input_error_counter++ > 20) {
LOG_ERROR(Input, "GC adapter timeout, Is the adapter connected?");
adapter_input_thread_running = false;
adapter_input_thread.request_stop();
restart_scan_thread = true;
}
return false;
@ -74,7 +131,7 @@ bool Adapter::IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payloa
return true;
}
void Adapter::UpdateControllers(const AdapterPayload& adapter_payload) {
void GCAdapter::UpdateControllers(const AdapterPayload& adapter_payload) {
for (std::size_t port = 0; port < pads.size(); ++port) {
const std::size_t offset = 1 + (9 * port);
const auto type = static_cast<ControllerTypes>(adapter_payload[offset] >> 4);
@ -84,23 +141,21 @@ void Adapter::UpdateControllers(const AdapterPayload& adapter_payload) {
const u8 b2 = adapter_payload[offset + 2];
UpdateStateButtons(port, b1, b2);
UpdateStateAxes(port, adapter_payload);
if (configuring) {
UpdateYuzuSettings(port);
}
}
}
}
void Adapter::UpdatePadType(std::size_t port, ControllerTypes pad_type) {
void GCAdapter::UpdatePadType(std::size_t port, ControllerTypes pad_type) {
if (pads[port].type == pad_type) {
return;
}
// Device changed reset device and set new type
ResetDevice(port);
pads[port] = {};
pads[port].type = pad_type;
}
void Adapter::UpdateStateButtons(std::size_t port, u8 b1, u8 b2) {
void GCAdapter::UpdateStateButtons(std::size_t port, [[maybe_unused]] u8 b1,
[[maybe_unused]] u8 b2) {
if (port >= pads.size()) {
return;
}
@ -116,25 +171,21 @@ void Adapter::UpdateStateButtons(std::size_t port, u8 b1, u8 b2) {
PadButton::TriggerR,
PadButton::TriggerL,
};
pads[port].buttons = 0;
for (std::size_t i = 0; i < b1_buttons.size(); ++i) {
if ((b1 & (1U << i)) != 0) {
pads[port].buttons =
static_cast<u16>(pads[port].buttons | static_cast<u16>(b1_buttons[i]));
pads[port].last_button = b1_buttons[i];
}
const bool button_status = (b1 & (1U << i)) != 0;
const int button = static_cast<int>(b1_buttons[i]);
SetButton(pads[port].identifier, button, button_status);
}
for (std::size_t j = 0; j < b2_buttons.size(); ++j) {
if ((b2 & (1U << j)) != 0) {
pads[port].buttons =
static_cast<u16>(pads[port].buttons | static_cast<u16>(b2_buttons[j]));
pads[port].last_button = b2_buttons[j];
}
const bool button_status = (b2 & (1U << j)) != 0;
const int button = static_cast<int>(b2_buttons[j]);
SetButton(pads[port].identifier, button, button_status);
}
}
void Adapter::UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_payload) {
void GCAdapter::UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_payload) {
if (port >= pads.size()) {
return;
}
@ -155,134 +206,70 @@ void Adapter::UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_pa
pads[port].axis_origin[index] = axis_value;
pads[port].reset_origin_counter++;
}
pads[port].axis_values[index] =
static_cast<s16>(axis_value - pads[port].axis_origin[index]);
const f32 axis_status = (axis_value - pads[port].axis_origin[index]) / 110.0f;
SetAxis(pads[port].identifier, static_cast<int>(index), axis_status);
}
}
void Adapter::UpdateYuzuSettings(std::size_t port) {
if (port >= pads.size()) {
return;
}
constexpr u8 axis_threshold = 50;
GCPadStatus pad_status = {.port = port};
if (pads[port].buttons != 0) {
pad_status.button = pads[port].last_button;
pad_queue.Push(pad_status);
}
// Accounting for a threshold here to ensure an intentional press
for (std::size_t i = 0; i < pads[port].axis_values.size(); ++i) {
const s16 value = pads[port].axis_values[i];
if (value > axis_threshold || value < -axis_threshold) {
pad_status.axis = static_cast<PadAxes>(i);
pad_status.axis_value = value;
pad_status.axis_threshold = axis_threshold;
pad_queue.Push(pad_status);
}
void GCAdapter::AdapterScanThread(std::stop_token stop_token) {
Common::SetCurrentThreadName("yuzu:input:ScanGCAdapter");
usb_adapter_handle = nullptr;
pads = {};
while (!stop_token.stop_requested() && !Setup()) {
std::this_thread::sleep_for(std::chrono::seconds(2));
}
}
void Adapter::UpdateVibrations() {
// Use 8 states to keep the switching between on/off fast enough for
// a human to not notice the difference between switching from on/off
// More states = more rumble strengths = slower update time
constexpr u8 vibration_states = 8;
vibration_counter = (vibration_counter + 1) % vibration_states;
for (GCController& pad : pads) {
const bool vibrate = pad.rumble_amplitude > vibration_counter;
vibration_changed |= vibrate != pad.enable_vibration;
pad.enable_vibration = vibrate;
}
SendVibrations();
}
void Adapter::SendVibrations() {
if (!rumble_enabled || !vibration_changed) {
return;
}
s32 size{};
constexpr u8 rumble_command = 0x11;
const u8 p1 = pads[0].enable_vibration;
const u8 p2 = pads[1].enable_vibration;
const u8 p3 = pads[2].enable_vibration;
const u8 p4 = pads[3].enable_vibration;
std::array<u8, 5> payload = {rumble_command, p1, p2, p3, p4};
const int err = libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, payload.data(),
static_cast<s32>(payload.size()), &size, 16);
if (err) {
LOG_DEBUG(Input, "Adapter libusb write failed: {}", libusb_error_name(err));
if (output_error_counter++ > 5) {
LOG_ERROR(Input, "GC adapter output timeout, Rumble disabled");
rumble_enabled = false;
}
return;
}
output_error_counter = 0;
vibration_changed = false;
}
bool Adapter::RumblePlay(std::size_t port, u8 amplitude) {
pads[port].rumble_amplitude = amplitude;
return rumble_enabled;
}
void Adapter::AdapterScanThread() {
adapter_scan_thread_running = true;
adapter_input_thread_running = false;
if (adapter_input_thread.joinable()) {
adapter_input_thread.join();
}
ClearLibusbHandle();
ResetDevices();
while (adapter_scan_thread_running && !adapter_input_thread_running) {
Setup();
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
void Adapter::Setup() {
usb_adapter_handle = libusb_open_device_with_vid_pid(libusb_ctx, 0x057e, 0x0337);
if (usb_adapter_handle == NULL) {
return;
bool GCAdapter::Setup() {
constexpr u16 nintendo_vid = 0x057e;
constexpr u16 gc_adapter_pid = 0x0337;
usb_adapter_handle =
std::make_unique<LibUSBDeviceHandle>(libusb_ctx->get(), nintendo_vid, gc_adapter_pid);
if (!usb_adapter_handle->get()) {
return false;
}
if (!CheckDeviceAccess()) {
ClearLibusbHandle();
return;
usb_adapter_handle = nullptr;
return false;
}
libusb_device* device = libusb_get_device(usb_adapter_handle);
libusb_device* const device = libusb_get_device(usb_adapter_handle->get());
LOG_INFO(Input, "GC adapter is now connected");
// GC Adapter found and accessible, registering it
if (GetGCEndpoint(device)) {
adapter_scan_thread_running = false;
adapter_input_thread_running = true;
rumble_enabled = true;
input_error_counter = 0;
output_error_counter = 0;
adapter_input_thread = std::thread(&Adapter::AdapterInputThread, this);
std::size_t port = 0;
for (GCController& pad : pads) {
pad.identifier = {
.guid = Common::UUID{""},
.port = port++,
.pad = 0,
};
PreSetController(pad.identifier);
}
adapter_input_thread =
std::jthread([this](std::stop_token stop_token) { AdapterInputThread(stop_token); });
return true;
}
return false;
}
bool Adapter::CheckDeviceAccess() {
bool GCAdapter::CheckDeviceAccess() {
// This fixes payload problems from offbrand GCAdapters
const s32 control_transfer_error =
libusb_control_transfer(usb_adapter_handle, 0x21, 11, 0x0001, 0, nullptr, 0, 1000);
libusb_control_transfer(usb_adapter_handle->get(), 0x21, 11, 0x0001, 0, nullptr, 0, 1000);
if (control_transfer_error < 0) {
LOG_ERROR(Input, "libusb_control_transfer failed with error= {}", control_transfer_error);
}
s32 kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle, 0);
s32 kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle->get(), 0);
if (kernel_driver_error == 1) {
kernel_driver_error = libusb_detach_kernel_driver(usb_adapter_handle, 0);
kernel_driver_error = libusb_detach_kernel_driver(usb_adapter_handle->get(), 0);
if (kernel_driver_error != 0 && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) {
LOG_ERROR(Input, "libusb_detach_kernel_driver failed with error = {}",
kernel_driver_error);
@ -290,15 +277,13 @@ bool Adapter::CheckDeviceAccess() {
}
if (kernel_driver_error && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) {
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
return false;
}
const int interface_claim_error = libusb_claim_interface(usb_adapter_handle, 0);
const int interface_claim_error = libusb_claim_interface(usb_adapter_handle->get(), 0);
if (interface_claim_error) {
LOG_ERROR(Input, "libusb_claim_interface failed with error = {}", interface_claim_error);
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
return false;
}
@ -306,7 +291,7 @@ bool Adapter::CheckDeviceAccess() {
return true;
}
bool Adapter::GetGCEndpoint(libusb_device* device) {
bool GCAdapter::GetGCEndpoint(libusb_device* device) {
libusb_config_descriptor* config = nullptr;
const int config_descriptor_return = libusb_get_config_descriptor(device, 0, &config);
if (config_descriptor_return != LIBUSB_SUCCESS) {
@ -332,68 +317,83 @@ bool Adapter::GetGCEndpoint(libusb_device* device) {
// This transfer seems to be responsible for clearing the state of the adapter
// Used to clear the "busy" state of when the device is unexpectedly unplugged
unsigned char clear_payload = 0x13;
libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, &clear_payload,
libusb_interrupt_transfer(usb_adapter_handle->get(), output_endpoint, &clear_payload,
sizeof(clear_payload), nullptr, 16);
return true;
}
void Adapter::JoinThreads() {
restart_scan_thread = false;
adapter_input_thread_running = false;
adapter_scan_thread_running = false;
bool GCAdapter::SetRumble(const PadIdentifier& identifier, const Input::VibrationStatus vibration) {
const auto mean_amplitude = (vibration.low_amplitude + vibration.high_amplitude) * 0.5f;
const auto processed_amplitude =
static_cast<u8>((mean_amplitude + std::pow(mean_amplitude, 0.3f)) * 0.5f * 0x8);
if (adapter_scan_thread.joinable()) {
adapter_scan_thread.join();
}
if (adapter_input_thread.joinable()) {
adapter_input_thread.join();
}
pads[identifier.port].rumble_amplitude = processed_amplitude;
return rumble_enabled;
}
void Adapter::ClearLibusbHandle() {
if (usb_adapter_handle) {
libusb_release_interface(usb_adapter_handle, 1);
libusb_close(usb_adapter_handle);
usb_adapter_handle = nullptr;
void GCAdapter::UpdateVibrations() {
// Use 8 states to keep the switching between on/off fast enough for
// a human to feel different vibration strenght
// More states == more rumble strengths == slower update time
constexpr u8 vibration_states = 8;
vibration_counter = (vibration_counter + 1) % vibration_states;
for (GCController& pad : pads) {
const bool vibrate = pad.rumble_amplitude > vibration_counter;
vibration_changed |= vibrate != pad.enable_vibration;
pad.enable_vibration = vibrate;
}
SendVibrations();
}
void Adapter::ResetDevices() {
for (std::size_t i = 0; i < pads.size(); ++i) {
ResetDevice(i);
void GCAdapter::SendVibrations() {
if (!rumble_enabled || !vibration_changed) {
return;
}
}
void Adapter::ResetDevice(std::size_t port) {
pads[port].type = ControllerTypes::None;
pads[port].enable_vibration = false;
pads[port].rumble_amplitude = 0;
pads[port].buttons = 0;
pads[port].last_button = PadButton::Undefined;
pads[port].axis_values.fill(0);
pads[port].reset_origin_counter = 0;
}
void Adapter::Reset() {
JoinThreads();
ClearLibusbHandle();
ResetDevices();
if (libusb_ctx) {
libusb_exit(libusb_ctx);
s32 size{};
constexpr u8 rumble_command = 0x11;
const u8 p1 = pads[0].enable_vibration;
const u8 p2 = pads[1].enable_vibration;
const u8 p3 = pads[2].enable_vibration;
const u8 p4 = pads[3].enable_vibration;
std::array<u8, 5> payload = {rumble_command, p1, p2, p3, p4};
const int err =
libusb_interrupt_transfer(usb_adapter_handle->get(), output_endpoint, payload.data(),
static_cast<s32>(payload.size()), &size, 16);
if (err) {
LOG_DEBUG(Input, "Adapter libusb write failed: {}", libusb_error_name(err));
if (output_error_counter++ > 5) {
LOG_ERROR(Input, "GC adapter output timeout, Rumble disabled");
rumble_enabled = false;
}
return;
}
output_error_counter = 0;
vibration_changed = false;
}
std::vector<Common::ParamPackage> Adapter::GetInputDevices() const {
bool GCAdapter::DeviceConnected(std::size_t port) const {
return pads[port].type != ControllerTypes::None;
}
void GCAdapter::Reset() {
adapter_scan_thread = {};
adapter_input_thread = {};
usb_adapter_handle = nullptr;
pads = {};
libusb_ctx = nullptr;
}
std::vector<Common::ParamPackage> GCAdapter::GetInputDevices() const {
std::vector<Common::ParamPackage> devices;
for (std::size_t port = 0; port < pads.size(); ++port) {
if (!DeviceConnected(port)) {
continue;
}
std::string name = fmt::format("Gamecube Controller {}", port + 1);
const std::string name = fmt::format("Gamecube Controller {}", port + 1);
devices.emplace_back(Common::ParamPackage{
{"class", "gcpad"},
{"engine", "gcpad"},
{"display", std::move(name)},
{"port", std::to_string(port)},
});
@ -401,8 +401,7 @@ std::vector<Common::ParamPackage> Adapter::GetInputDevices() const {
return devices;
}
InputCommon::ButtonMapping Adapter::GetButtonMappingForDevice(
const Common::ParamPackage& params) const {
ButtonMapping GCAdapter::GetButtonMappingForDevice(const Common::ParamPackage& params) {
// This list is missing ZL/ZR since those are not considered buttons.
// We will add those afterwards
// This list also excludes any button that can't be really mapped
@ -425,7 +424,7 @@ InputCommon::ButtonMapping Adapter::GetButtonMappingForDevice(
return {};
}
InputCommon::ButtonMapping mapping{};
ButtonMapping mapping{};
for (const auto& [switch_button, gcadapter_button] : switch_to_gcadapter_button) {
Common::ParamPackage button_params({{"engine", "gcpad"}});
button_params.Set("port", params.Get("port", 0));
@ -434,30 +433,30 @@ InputCommon::ButtonMapping Adapter::GetButtonMappingForDevice(
}
// Add the missing bindings for ZL/ZR
static constexpr std::array<std::pair<Settings::NativeButton::Values, PadAxes>, 2>
static constexpr std::array<std::tuple<Settings::NativeButton::Values, PadButton, PadAxes>, 2>
switch_to_gcadapter_axis = {
std::pair{Settings::NativeButton::ZL, PadAxes::TriggerLeft},
{Settings::NativeButton::ZR, PadAxes::TriggerRight},
std::tuple{Settings::NativeButton::ZL, PadButton::TriggerL, PadAxes::TriggerLeft},
{Settings::NativeButton::ZR, PadButton::TriggerR, PadAxes::TriggerRight},
};
for (const auto& [switch_button, gcadapter_axis] : switch_to_gcadapter_axis) {
for (const auto& [switch_button, gcadapter_buton, gcadapter_axis] : switch_to_gcadapter_axis) {
Common::ParamPackage button_params({{"engine", "gcpad"}});
button_params.Set("port", params.Get("port", 0));
button_params.Set("button", static_cast<s32>(PadButton::Stick));
button_params.Set("button", static_cast<s32>(gcadapter_buton));
button_params.Set("axis", static_cast<s32>(gcadapter_axis));
button_params.Set("threshold", 0.5f);
button_params.Set("range", 1.9f);
button_params.Set("direction", "+");
mapping.insert_or_assign(switch_button, std::move(button_params));
}
return mapping;
}
InputCommon::AnalogMapping Adapter::GetAnalogMappingForDevice(
const Common::ParamPackage& params) const {
AnalogMapping GCAdapter::GetAnalogMappingForDevice(const Common::ParamPackage& params) {
if (!params.Has("port")) {
return {};
}
InputCommon::AnalogMapping mapping = {};
AnalogMapping mapping = {};
Common::ParamPackage left_analog_params;
left_analog_params.Set("engine", "gcpad");
left_analog_params.Set("port", params.Get("port", 0));
@ -473,34 +472,12 @@ InputCommon::AnalogMapping Adapter::GetAnalogMappingForDevice(
return mapping;
}
bool Adapter::DeviceConnected(std::size_t port) const {
return pads[port].type != ControllerTypes::None;
std::string GCAdapter::GetUIName(const Common::ParamPackage& params) const {
if (params.Has("button")) {
return fmt::format("Button {}", params.Get("button", 0));
}
return "Bad GC Adapter";
}
void Adapter::BeginConfiguration() {
pad_queue.Clear();
configuring = true;
}
void Adapter::EndConfiguration() {
pad_queue.Clear();
configuring = false;
}
Common::SPSCQueue<GCPadStatus>& Adapter::GetPadQueue() {
return pad_queue;
}
const Common::SPSCQueue<GCPadStatus>& Adapter::GetPadQueue() const {
return pad_queue;
}
GCController& Adapter::GetPadState(std::size_t port) {
return pads.at(port);
}
const GCController& Adapter::GetPadState(std::size_t port) const {
return pads.at(port);
}
} // namespace GCAdapter
} // namespace InputCommon

View File

@ -0,0 +1,128 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
#include <mutex>
#include <stop_token>
#include <thread>
#include "input_common/input_engine.h"
struct libusb_context;
struct libusb_device;
struct libusb_device_handle;
namespace InputCommon {
class LibUSBContext;
class LibUSBDeviceHandle;
class GCAdapter : public InputCommon::InputEngine {
public:
explicit GCAdapter(const std::string input_engine_);
~GCAdapter();
bool SetRumble(const PadIdentifier& identifier,
const Input::VibrationStatus vibration) override;
/// Used for automapping features
std::vector<Common::ParamPackage> GetInputDevices() const override;
ButtonMapping GetButtonMappingForDevice(const Common::ParamPackage& params) override;
AnalogMapping GetAnalogMappingForDevice(const Common::ParamPackage& params) override;
std::string GetUIName(const Common::ParamPackage& params) const override;
private:
enum class PadButton {
Undefined = 0x0000,
ButtonLeft = 0x0001,
ButtonRight = 0x0002,
ButtonDown = 0x0004,
ButtonUp = 0x0008,
TriggerZ = 0x0010,
TriggerR = 0x0020,
TriggerL = 0x0040,
ButtonA = 0x0100,
ButtonB = 0x0200,
ButtonX = 0x0400,
ButtonY = 0x0800,
ButtonStart = 0x1000,
};
enum class PadAxes : u8 {
StickX,
StickY,
SubstickX,
SubstickY,
TriggerLeft,
TriggerRight,
Undefined,
};
enum class ControllerTypes {
None,
Wired,
Wireless,
};
struct GCController {
ControllerTypes type = ControllerTypes::None;
PadIdentifier identifier{};
bool enable_vibration = false;
u8 rumble_amplitude{};
std::array<u8, 6> axis_origin{};
u8 reset_origin_counter{};
};
using AdapterPayload = std::array<u8, 37>;
void UpdatePadType(std::size_t port, ControllerTypes pad_type);
void UpdateControllers(const AdapterPayload& adapter_payload);
void UpdateStateButtons(std::size_t port, u8 b1, u8 b2);
void UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_payload);
void AdapterInputThread(std::stop_token stop_token);
void AdapterScanThread(std::stop_token stop_token);
bool IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payload_size);
/// For use in initialization, querying devices to find the adapter
bool Setup();
/// Returns true if we successfully gain access to GC Adapter
bool CheckDeviceAccess();
/// Captures GC Adapter endpoint address
/// Returns true if the endpoint was set correctly
bool GetGCEndpoint(libusb_device* device);
/// Returns true if there is a device connected to port
bool DeviceConnected(std::size_t port) const;
/// For shutting down, clear all data, join all threads, release usb
void Reset();
void UpdateVibrations();
// Updates vibration state of all controllers
void SendVibrations();
std::unique_ptr<LibUSBDeviceHandle> usb_adapter_handle;
std::array<GCController, 4> pads;
std::jthread adapter_input_thread;
std::jthread adapter_scan_thread;
bool restart_scan_thread{};
std::unique_ptr<LibUSBContext> libusb_ctx;
u8 input_endpoint{0};
u8 output_endpoint{0};
u8 input_error_counter{0};
u8 output_error_counter{0};
int vibration_counter{0};
bool rumble_enabled{true};
bool vibration_changed{true};
};
} // namespace InputCommon

View File

@ -0,0 +1,320 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <cstring>
#include <regex>
#include <fmt/format.h>
#include "common/fs/file.h"
#include "common/fs/fs_types.h"
#include "common/fs/path_util.h"
#include "common/logging/log.h"
#include "common/settings.h"
#include "input_common/drivers/tas_input.h"
namespace InputCommon::TasInput {
enum TasAxes : u8 {
StickX,
StickY,
SubstickX,
SubstickY,
Undefined,
};
// Supported keywords and buttons from a TAS file
constexpr std::array<std::pair<std::string_view, TasButton>, 20> text_to_tas_button = {
std::pair{"KEY_A", TasButton::BUTTON_A},
{"KEY_B", TasButton::BUTTON_B},
{"KEY_X", TasButton::BUTTON_X},
{"KEY_Y", TasButton::BUTTON_Y},
{"KEY_LSTICK", TasButton::STICK_L},
{"KEY_RSTICK", TasButton::STICK_R},
{"KEY_L", TasButton::TRIGGER_L},
{"KEY_R", TasButton::TRIGGER_R},
{"KEY_PLUS", TasButton::BUTTON_PLUS},
{"KEY_MINUS", TasButton::BUTTON_MINUS},
{"KEY_DLEFT", TasButton::BUTTON_LEFT},
{"KEY_DUP", TasButton::BUTTON_UP},
{"KEY_DRIGHT", TasButton::BUTTON_RIGHT},
{"KEY_DDOWN", TasButton::BUTTON_DOWN},
{"KEY_SL", TasButton::BUTTON_SL},
{"KEY_SR", TasButton::BUTTON_SR},
{"KEY_CAPTURE", TasButton::BUTTON_CAPTURE},
{"KEY_HOME", TasButton::BUTTON_HOME},
{"KEY_ZL", TasButton::TRIGGER_ZL},
{"KEY_ZR", TasButton::TRIGGER_ZR},
};
Tas::Tas(const std::string input_engine_) : InputCommon::InputEngine(input_engine_) {
for (size_t player_index = 0; player_index < PLAYER_NUMBER; player_index++) {
PadIdentifier identifier{
.guid = Common::UUID{},
.port = player_index,
.pad = 0,
};
PreSetController(identifier);
}
ClearInput();
if (!Settings::values.tas_enable) {
needs_reset = true;
return;
}
LoadTasFiles();
}
Tas::~Tas() {
Stop();
};
void Tas::LoadTasFiles() {
script_length = 0;
for (size_t i = 0; i < commands.size(); i++) {
LoadTasFile(i);
if (commands[i].size() > script_length) {
script_length = commands[i].size();
}
}
}
void Tas::LoadTasFile(size_t player_index) {
if (!commands[player_index].empty()) {
commands[player_index].clear();
}
std::string file =
Common::FS::ReadStringFromFile(Common::FS::GetYuzuPath(Common::FS::YuzuPath::TASDir) /
fmt::format("script0-{}.txt", player_index + 1),
Common::FS::FileType::BinaryFile);
std::stringstream command_line(file);
std::string line;
int frame_no = 0;
while (std::getline(command_line, line, '\n')) {
if (line.empty()) {
continue;
}
std::smatch m;
std::stringstream linestream(line);
std::string segment;
std::vector<std::string> seglist;
while (std::getline(linestream, segment, ' ')) {
seglist.push_back(segment);
}
if (seglist.size() < 4) {
continue;
}
while (frame_no < std::stoi(seglist.at(0))) {
commands[player_index].push_back({});
frame_no++;
}
TASCommand command = {
.buttons = ReadCommandButtons(seglist.at(1)),
.l_axis = ReadCommandAxis(seglist.at(2)),
.r_axis = ReadCommandAxis(seglist.at(3)),
};
commands[player_index].push_back(command);
frame_no++;
}
LOG_INFO(Input, "TAS file loaded! {} frames", frame_no);
}
void Tas::WriteTasFile(std::u8string file_name) {
std::string output_text;
for (size_t frame = 0; frame < record_commands.size(); frame++) {
const TASCommand& line = record_commands[frame];
output_text += fmt::format("{} {} {} {} {}\n", frame, WriteCommandButtons(line.buttons),
WriteCommandAxis(line.l_axis), WriteCommandAxis(line.r_axis));
}
const auto bytes_written = Common::FS::WriteStringToFile(
Common::FS::GetYuzuPath(Common::FS::YuzuPath::TASDir) / file_name,
Common::FS::FileType::TextFile, output_text);
if (bytes_written == output_text.size()) {
LOG_INFO(Input, "TAS file written to file!");
} else {
LOG_ERROR(Input, "Writing the TAS-file has failed! {} / {} bytes written", bytes_written,
output_text.size());
}
}
void Tas::RecordInput(u32 buttons, TasAnalog left_axis, TasAnalog right_axis) {
last_input = {
.buttons = buttons,
.l_axis = FlipAxisY(left_axis),
.r_axis = FlipAxisY(right_axis),
};
}
TasAnalog Tas::FlipAxisY(TasAnalog old) {
return {
.x = old.x,
.y = -old.y,
};
}
std::tuple<TasState, size_t, size_t> Tas::GetStatus() const {
TasState state;
if (is_recording) {
return {TasState::Recording, 0, record_commands.size()};
}
if (is_running) {
state = TasState::Running;
} else {
state = TasState::Stopped;
}
return {state, current_command, script_length};
}
void Tas::UpdateThread() {
if (!Settings::values.tas_enable) {
if (is_running) {
Stop();
}
return;
}
if (is_recording) {
record_commands.push_back(last_input);
}
if (needs_reset) {
current_command = 0;
needs_reset = false;
LoadTasFiles();
LOG_DEBUG(Input, "tas_reset done");
}
if (!is_running) {
ClearInput();
return;
}
if (current_command < script_length) {
LOG_DEBUG(Input, "Playing TAS {}/{}", current_command, script_length);
size_t frame = current_command++;
for (size_t player_index = 0; player_index < commands.size(); player_index++) {
TASCommand command{};
if (frame < commands[player_index].size()) {
command = commands[player_index][frame];
}
PadIdentifier identifier{
.guid = Common::UUID{},
.port = player_index,
.pad = 0,
};
for (std::size_t i = 0; i < sizeof(command.buttons); ++i) {
const bool button_status = (command.buttons & (1U << i)) != 0;
const int button = static_cast<int>(i);
SetButton(identifier, button, button_status);
}
SetAxis(identifier, TasAxes::StickX, command.l_axis.x);
SetAxis(identifier, TasAxes::StickY, command.l_axis.y);
SetAxis(identifier, TasAxes::SubstickX, command.r_axis.x);
SetAxis(identifier, TasAxes::SubstickY, command.r_axis.y);
}
} else {
is_running = Settings::values.tas_loop.GetValue();
current_command = 0;
ClearInput();
}
}
void Tas::ClearInput() {
ResetButtonState();
ResetAnalogState();
}
TasAnalog Tas::ReadCommandAxis(const std::string& line) const {
std::stringstream linestream(line);
std::string segment;
std::vector<std::string> seglist;
while (std::getline(linestream, segment, ';')) {
seglist.push_back(segment);
}
const float x = std::stof(seglist.at(0)) / 32767.0f;
const float y = std::stof(seglist.at(1)) / 32767.0f;
return {x, y};
}
u32 Tas::ReadCommandButtons(const std::string& data) const {
std::stringstream button_text(data);
std::string line;
u32 buttons = 0;
while (std::getline(button_text, line, ';')) {
for (auto [text, tas_button] : text_to_tas_button) {
if (text == line) {
buttons |= static_cast<u32>(tas_button);
break;
}
}
}
return buttons;
}
std::string Tas::WriteCommandButtons(u32 buttons) const {
std::string returns = "";
for (auto [text_button, tas_button] : text_to_tas_button) {
if ((buttons & static_cast<u32>(tas_button)) != 0)
returns += fmt::format("{};", text_button.substr(4));
}
return returns.empty() ? "NONE" : returns.substr(2);
}
std::string Tas::WriteCommandAxis(TasAnalog analog) const {
return fmt::format("{};{}", analog.x * 32767, analog.y * 32767);
}
void Tas::StartStop() {
if (!Settings::values.tas_enable) {
return;
}
if (is_running) {
Stop();
} else {
is_running = true;
}
}
void Tas::Stop() {
is_running = false;
}
void Tas::Reset() {
if (!Settings::values.tas_enable) {
return;
}
needs_reset = true;
}
bool Tas::Record() {
if (!Settings::values.tas_enable) {
return true;
}
is_recording = !is_recording;
return is_recording;
}
void Tas::SaveRecording(bool overwrite_file) {
if (is_recording) {
return;
}
if (record_commands.empty()) {
return;
}
WriteTasFile(u8"record.txt");
if (overwrite_file) {
WriteTasFile(u8"script0-1.txt");
}
needs_reset = true;
record_commands.clear();
}
} // namespace InputCommon::TasInput

View File

@ -0,0 +1,200 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include "common/common_types.h"
#include "common/settings_input.h"
#include "input_common/input_engine.h"
#include "input_common/main.h"
/*
To play back TAS scripts on Yuzu, select the folder with scripts in the configuration menu below
Tools -> Configure TAS. The file itself has normal text format and has to be called script0-1.txt
for controller 1, script0-2.txt for controller 2 and so forth (with max. 8 players).
A script file has the same format as TAS-nx uses, so final files will look like this:
1 KEY_B 0;0 0;0
6 KEY_ZL 0;0 0;0
41 KEY_ZL;KEY_Y 0;0 0;0
43 KEY_X;KEY_A 32767;0 0;0
44 KEY_A 32767;0 0;0
45 KEY_A 32767;0 0;0
46 KEY_A 32767;0 0;0
47 KEY_A 32767;0 0;0
After placing the file at the correct location, it can be read into Yuzu with the (default) hotkey
CTRL+F6 (refresh). In the bottom left corner, it will display the amount of frames the script file
has. Playback can be started or stopped using CTRL+F5.
However, for playback to actually work, the correct input device has to be selected: In the Controls
menu, select TAS from the device list for the controller that the script should be played on.
Recording a new script file is really simple: Just make sure that the proper device (not TAS) is
connected on P1, and press CTRL+F7 to start recording. When done, just press the same keystroke
again (CTRL+F7). The new script will be saved at the location previously selected, as the filename
record.txt.
For debugging purposes, the common controller debugger can be used (View -> Debugging -> Controller
P1).
*/
namespace InputCommon::TasInput {
constexpr size_t PLAYER_NUMBER = 10;
enum class TasButton : u32 {
BUTTON_A = 1U << 0,
BUTTON_B = 1U << 1,
BUTTON_X = 1U << 2,
BUTTON_Y = 1U << 3,
STICK_L = 1U << 4,
STICK_R = 1U << 5,
TRIGGER_L = 1U << 6,
TRIGGER_R = 1U << 7,
TRIGGER_ZL = 1U << 8,
TRIGGER_ZR = 1U << 9,
BUTTON_PLUS = 1U << 10,
BUTTON_MINUS = 1U << 11,
BUTTON_LEFT = 1U << 12,
BUTTON_UP = 1U << 13,
BUTTON_RIGHT = 1U << 14,
BUTTON_DOWN = 1U << 15,
BUTTON_SL = 1U << 16,
BUTTON_SR = 1U << 17,
BUTTON_HOME = 1U << 18,
BUTTON_CAPTURE = 1U << 19,
};
struct TasAnalog {
float x{};
float y{};
};
enum class TasState {
Running,
Recording,
Stopped,
};
class Tas final : public InputCommon::InputEngine {
public:
explicit Tas(const std::string input_engine_);
~Tas();
/**
* Changes the input status that will be stored in each frame
* @param buttons: bitfield with the status of the buttons
* @param left_axis: value of the left axis
* @param right_axis: value of the right axis
*/
void RecordInput(u32 buttons, TasAnalog left_axis, TasAnalog right_axis);
// Main loop that records or executes input
void UpdateThread();
// Sets the flag to start or stop the TAS command excecution and swaps controllers profiles
void StartStop();
// Stop the TAS and reverts any controller profile
void Stop();
// Sets the flag to reload the file and start from the begining in the next update
void Reset();
/**
* Sets the flag to enable or disable recording of inputs
* @return Returns true if the current recording status is enabled
*/
bool Record();
/**
* Saves contents of record_commands on a file
* @param overwrite_file: Indicates if player 1 should be overwritten
*/
void SaveRecording(bool overwrite_file);
/**
* Returns the current status values of TAS playback/recording
* @return Tuple of
* TasState indicating the current state out of Running ;
* Current playback progress ;
* Total length of script file currently loaded or being recorded
*/
std::tuple<TasState, size_t, size_t> GetStatus() const;
private:
struct TASCommand {
u32 buttons{};
TasAnalog l_axis{};
TasAnalog r_axis{};
};
/// Loads TAS files from all players
void LoadTasFiles();
/** Loads TAS file from the specified player
* @param player_index: player number where data is going to be stored
*/
void LoadTasFile(size_t player_index);
/** Writes a TAS file from the recorded commands
* @param file_name: name of the file to be written
*/
void WriteTasFile(std::u8string file_name);
/** Inverts the Y axis polarity
* @param old: value of the axis
* @return new value of the axis
*/
TasAnalog FlipAxisY(TasAnalog old);
/**
* Parses a string containing the axis values. X and Y have a range from -32767 to 32767
* @param line: string containing axis values with the following format "x;y"
* @return Returns a TAS analog object with axis values with range from -1.0 to 1.0
*/
TasAnalog ReadCommandAxis(const std::string& line) const;
/**
* Parses a string containing the button values. Each button is represented by it's text format
* specified in text_to_tas_button array
* @param line: string containing button name with the following format "a;b;c;d..."
* @return Returns a u32 with each bit representing the status of a button
*/
u32 ReadCommandButtons(const std::string& line) const;
/**
* Reset state of all players
*/
void ClearInput();
/**
* Converts an u32 containing the button status into the text equivalent
* @param buttons: bitfield with the status of the buttons
* @return Returns a string with the name of the buttons to be written to the file
*/
std::string WriteCommandButtons(u32 buttons) const;
/**
* Converts an TAS analog object containing the axis status into the text equivalent
* @param data: value of the axis
* @return A string with the value of the axis to be written to the file
*/
std::string WriteCommandAxis(TasAnalog data) const;
size_t script_length{0};
bool is_old_input_saved{false};
bool is_recording{false};
bool is_running{false};
bool needs_reset{false};
std::array<std::vector<TASCommand>, PLAYER_NUMBER> commands{};
std::vector<TASCommand> record_commands{};
size_t current_command{0};
TASCommand last_input{}; // only used for recording
};
} // namespace InputCommon::TasInput

View File

@ -1,168 +0,0 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
#include <algorithm>
#include <functional>
#include <mutex>
#include <thread>
#include <unordered_map>
#include "common/common_types.h"
#include "common/threadsafe_queue.h"
#include "input_common/main.h"
struct libusb_context;
struct libusb_device;
struct libusb_device_handle;
namespace GCAdapter {
enum class PadButton {
Undefined = 0x0000,
ButtonLeft = 0x0001,
ButtonRight = 0x0002,
ButtonDown = 0x0004,
ButtonUp = 0x0008,
TriggerZ = 0x0010,
TriggerR = 0x0020,
TriggerL = 0x0040,
ButtonA = 0x0100,
ButtonB = 0x0200,
ButtonX = 0x0400,
ButtonY = 0x0800,
ButtonStart = 0x1000,
// Below is for compatibility with "AxisButton" type
Stick = 0x2000,
};
enum class PadAxes : u8 {
StickX,
StickY,
SubstickX,
SubstickY,
TriggerLeft,
TriggerRight,
Undefined,
};
enum class ControllerTypes {
None,
Wired,
Wireless,
};
struct GCPadStatus {
std::size_t port{};
PadButton button{PadButton::Undefined}; // Or-ed PAD_BUTTON_* and PAD_TRIGGER_* bits
PadAxes axis{PadAxes::Undefined};
s16 axis_value{};
u8 axis_threshold{50};
};
struct GCController {
ControllerTypes type{};
bool enable_vibration{};
u8 rumble_amplitude{};
u16 buttons{};
PadButton last_button{};
std::array<s16, 6> axis_values{};
std::array<u8, 6> axis_origin{};
u8 reset_origin_counter{};
};
class Adapter {
public:
Adapter();
~Adapter();
/// Request a vibration for a controller
bool RumblePlay(std::size_t port, u8 amplitude);
/// Used for polling
void BeginConfiguration();
void EndConfiguration();
Common::SPSCQueue<GCPadStatus>& GetPadQueue();
const Common::SPSCQueue<GCPadStatus>& GetPadQueue() const;
GCController& GetPadState(std::size_t port);
const GCController& GetPadState(std::size_t port) const;
/// Returns true if there is a device connected to port
bool DeviceConnected(std::size_t port) const;
/// Used for automapping features
std::vector<Common::ParamPackage> GetInputDevices() const;
InputCommon::ButtonMapping GetButtonMappingForDevice(const Common::ParamPackage& params) const;
InputCommon::AnalogMapping GetAnalogMappingForDevice(const Common::ParamPackage& params) const;
private:
using AdapterPayload = std::array<u8, 37>;
void UpdatePadType(std::size_t port, ControllerTypes pad_type);
void UpdateControllers(const AdapterPayload& adapter_payload);
void UpdateYuzuSettings(std::size_t port);
void UpdateStateButtons(std::size_t port, u8 b1, u8 b2);
void UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_payload);
void UpdateVibrations();
void AdapterInputThread();
void AdapterScanThread();
bool IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payload_size);
// Updates vibration state of all controllers
void SendVibrations();
/// For use in initialization, querying devices to find the adapter
void Setup();
/// Resets status of all GC controller devices to a disconnected state
void ResetDevices();
/// Resets status of device connected to a disconnected state
void ResetDevice(std::size_t port);
/// Returns true if we successfully gain access to GC Adapter
bool CheckDeviceAccess();
/// Captures GC Adapter endpoint address
/// Returns true if the endpoint was set correctly
bool GetGCEndpoint(libusb_device* device);
/// For shutting down, clear all data, join all threads, release usb
void Reset();
// Join all threads
void JoinThreads();
// Release usb handles
void ClearLibusbHandle();
libusb_device_handle* usb_adapter_handle = nullptr;
std::array<GCController, 4> pads;
Common::SPSCQueue<GCPadStatus> pad_queue;
std::thread adapter_input_thread;
std::thread adapter_scan_thread;
bool adapter_input_thread_running;
bool adapter_scan_thread_running;
bool restart_scan_thread;
libusb_context* libusb_ctx;
u8 input_endpoint{0};
u8 output_endpoint{0};
u8 input_error_counter{0};
u8 output_error_counter{0};
int vibration_counter{0};
bool configuring{false};
bool rumble_enabled{true};
bool vibration_changed{true};
};
} // namespace GCAdapter

View File

@ -1,356 +0,0 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <atomic>
#include <list>
#include <mutex>
#include <utility>
#include "common/assert.h"
#include "common/threadsafe_queue.h"
#include "input_common/gcadapter/gc_adapter.h"
#include "input_common/gcadapter/gc_poller.h"
namespace InputCommon {
class GCButton final : public Input::ButtonDevice {
public:
explicit GCButton(u32 port_, s32 button_, const GCAdapter::Adapter* adapter)
: port(port_), button(button_), gcadapter(adapter) {}
~GCButton() override;
bool GetStatus() const override {
if (gcadapter->DeviceConnected(port)) {
return (gcadapter->GetPadState(port).buttons & button) != 0;
}
return false;
}
private:
const u32 port;
const s32 button;
const GCAdapter::Adapter* gcadapter;
};
class GCAxisButton final : public Input::ButtonDevice {
public:
explicit GCAxisButton(u32 port_, u32 axis_, float threshold_, bool trigger_if_greater_,
const GCAdapter::Adapter* adapter)
: port(port_), axis(axis_), threshold(threshold_), trigger_if_greater(trigger_if_greater_),
gcadapter(adapter) {}
bool GetStatus() const override {
if (gcadapter->DeviceConnected(port)) {
const float current_axis_value = gcadapter->GetPadState(port).axis_values.at(axis);
const float axis_value = current_axis_value / 128.0f;
if (trigger_if_greater) {
// TODO: Might be worthwile to set a slider for the trigger threshold. It is
// currently always set to 0.5 in configure_input_player.cpp ZL/ZR HandleClick
return axis_value > threshold;
}
return axis_value < -threshold;
}
return false;
}
private:
const u32 port;
const u32 axis;
float threshold;
bool trigger_if_greater;
const GCAdapter::Adapter* gcadapter;
};
GCButtonFactory::GCButtonFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
: adapter(std::move(adapter_)) {}
GCButton::~GCButton() = default;
std::unique_ptr<Input::ButtonDevice> GCButtonFactory::Create(const Common::ParamPackage& params) {
const auto button_id = params.Get("button", 0);
const auto port = static_cast<u32>(params.Get("port", 0));
constexpr s32 PAD_STICK_ID = static_cast<s32>(GCAdapter::PadButton::Stick);
// button is not an axis/stick button
if (button_id != PAD_STICK_ID) {
return std::make_unique<GCButton>(port, button_id, adapter.get());
}
// For Axis buttons, used by the binary sticks.
if (button_id == PAD_STICK_ID) {
const int axis = params.Get("axis", 0);
const float threshold = params.Get("threshold", 0.25f);
const std::string direction_name = params.Get("direction", "");
bool trigger_if_greater;
if (direction_name == "+") {
trigger_if_greater = true;
} else if (direction_name == "-") {
trigger_if_greater = false;
} else {
trigger_if_greater = true;
LOG_ERROR(Input, "Unknown direction {}", direction_name);
}
return std::make_unique<GCAxisButton>(port, axis, threshold, trigger_if_greater,
adapter.get());
}
return nullptr;
}
Common::ParamPackage GCButtonFactory::GetNextInput() const {
Common::ParamPackage params;
GCAdapter::GCPadStatus pad;
auto& queue = adapter->GetPadQueue();
while (queue.Pop(pad)) {
// This while loop will break on the earliest detected button
params.Set("engine", "gcpad");
params.Set("port", static_cast<s32>(pad.port));
if (pad.button != GCAdapter::PadButton::Undefined) {
params.Set("button", static_cast<u16>(pad.button));
}
// For Axis button implementation
if (pad.axis != GCAdapter::PadAxes::Undefined) {
params.Set("axis", static_cast<u8>(pad.axis));
params.Set("button", static_cast<u16>(GCAdapter::PadButton::Stick));
params.Set("threshold", "0.25");
if (pad.axis_value > 0) {
params.Set("direction", "+");
} else {
params.Set("direction", "-");
}
break;
}
}
return params;
}
void GCButtonFactory::BeginConfiguration() {
polling = true;
adapter->BeginConfiguration();
}
void GCButtonFactory::EndConfiguration() {
polling = false;
adapter->EndConfiguration();
}
class GCAnalog final : public Input::AnalogDevice {
public:
explicit GCAnalog(u32 port_, u32 axis_x_, u32 axis_y_, bool invert_x_, bool invert_y_,
float deadzone_, float range_, const GCAdapter::Adapter* adapter)
: port(port_), axis_x(axis_x_), axis_y(axis_y_), invert_x(invert_x_), invert_y(invert_y_),
deadzone(deadzone_), range(range_), gcadapter(adapter) {}
float GetAxis(u32 axis) const {
if (gcadapter->DeviceConnected(port)) {
std::lock_guard lock{mutex};
const auto axis_value =
static_cast<float>(gcadapter->GetPadState(port).axis_values.at(axis));
return (axis_value) / (100.0f * range);
}
return 0.0f;
}
std::pair<float, float> GetAnalog(u32 analog_axis_x, u32 analog_axis_y) const {
float x = GetAxis(analog_axis_x);
float y = GetAxis(analog_axis_y);
if (invert_x) {
x = -x;
}
if (invert_y) {
y = -y;
}
// Make sure the coordinates are in the unit circle,
// otherwise normalize it.
float r = x * x + y * y;
if (r > 1.0f) {
r = std::sqrt(r);
x /= r;
y /= r;
}
return {x, y};
}
std::tuple<float, float> GetStatus() const override {
const auto [x, y] = GetAnalog(axis_x, axis_y);
const float r = std::sqrt((x * x) + (y * y));
if (r > deadzone) {
return {x / r * (r - deadzone) / (1 - deadzone),
y / r * (r - deadzone) / (1 - deadzone)};
}
return {0.0f, 0.0f};
}
std::tuple<float, float> GetRawStatus() const override {
const float x = GetAxis(axis_x);
const float y = GetAxis(axis_y);
return {x, y};
}
Input::AnalogProperties GetAnalogProperties() const override {
return {deadzone, range, 0.5f};
}
bool GetAnalogDirectionStatus(Input::AnalogDirection direction) const override {
const auto [x, y] = GetStatus();
const float directional_deadzone = 0.5f;
switch (direction) {
case Input::AnalogDirection::RIGHT:
return x > directional_deadzone;
case Input::AnalogDirection::LEFT:
return x < -directional_deadzone;
case Input::AnalogDirection::UP:
return y > directional_deadzone;
case Input::AnalogDirection::DOWN:
return y < -directional_deadzone;
}
return false;
}
private:
const u32 port;
const u32 axis_x;
const u32 axis_y;
const bool invert_x;
const bool invert_y;
const float deadzone;
const float range;
const GCAdapter::Adapter* gcadapter;
mutable std::mutex mutex;
};
/// An analog device factory that creates analog devices from GC Adapter
GCAnalogFactory::GCAnalogFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
: adapter(std::move(adapter_)) {}
/**
* Creates analog device from joystick axes
* @param params contains parameters for creating the device:
* - "port": the nth gcpad on the adapter
* - "axis_x": the index of the axis to be bind as x-axis
* - "axis_y": the index of the axis to be bind as y-axis
*/
std::unique_ptr<Input::AnalogDevice> GCAnalogFactory::Create(const Common::ParamPackage& params) {
const auto port = static_cast<u32>(params.Get("port", 0));
const auto axis_x = static_cast<u32>(params.Get("axis_x", 0));
const auto axis_y = static_cast<u32>(params.Get("axis_y", 1));
const auto deadzone = std::clamp(params.Get("deadzone", 0.0f), 0.0f, 1.0f);
const auto range = std::clamp(params.Get("range", 1.0f), 0.50f, 1.50f);
const std::string invert_x_value = params.Get("invert_x", "+");
const std::string invert_y_value = params.Get("invert_y", "+");
const bool invert_x = invert_x_value == "-";
const bool invert_y = invert_y_value == "-";
return std::make_unique<GCAnalog>(port, axis_x, axis_y, invert_x, invert_y, deadzone, range,
adapter.get());
}
void GCAnalogFactory::BeginConfiguration() {
polling = true;
adapter->BeginConfiguration();
}
void GCAnalogFactory::EndConfiguration() {
polling = false;
adapter->EndConfiguration();
}
Common::ParamPackage GCAnalogFactory::GetNextInput() {
GCAdapter::GCPadStatus pad;
Common::ParamPackage params;
auto& queue = adapter->GetPadQueue();
while (queue.Pop(pad)) {
if (pad.button != GCAdapter::PadButton::Undefined) {
params.Set("engine", "gcpad");
params.Set("port", static_cast<s32>(pad.port));
params.Set("button", static_cast<u16>(pad.button));
return params;
}
if (pad.axis == GCAdapter::PadAxes::Undefined ||
std::abs(static_cast<float>(pad.axis_value) / 128.0f) < 0.1f) {
continue;
}
// An analog device needs two axes, so we need to store the axis for later and wait for
// a second input event. The axes also must be from the same joystick.
const u8 axis = static_cast<u8>(pad.axis);
if (axis == 0 || axis == 1) {
analog_x_axis = 0;
analog_y_axis = 1;
controller_number = static_cast<s32>(pad.port);
break;
}
if (axis == 2 || axis == 3) {
analog_x_axis = 2;
analog_y_axis = 3;
controller_number = static_cast<s32>(pad.port);
break;
}
if (analog_x_axis == -1) {
analog_x_axis = axis;
controller_number = static_cast<s32>(pad.port);
} else if (analog_y_axis == -1 && analog_x_axis != axis &&
controller_number == static_cast<s32>(pad.port)) {
analog_y_axis = axis;
break;
}
}
if (analog_x_axis != -1 && analog_y_axis != -1) {
params.Set("engine", "gcpad");
params.Set("port", controller_number);
params.Set("axis_x", analog_x_axis);
params.Set("axis_y", analog_y_axis);
params.Set("invert_x", "+");
params.Set("invert_y", "+");
analog_x_axis = -1;
analog_y_axis = -1;
controller_number = -1;
return params;
}
return params;
}
class GCVibration final : public Input::VibrationDevice {
public:
explicit GCVibration(u32 port_, GCAdapter::Adapter* adapter)
: port(port_), gcadapter(adapter) {}
u8 GetStatus() const override {
return gcadapter->RumblePlay(port, 0);
}
bool SetRumblePlay(f32 amp_low, [[maybe_unused]] f32 freq_low, f32 amp_high,
[[maybe_unused]] f32 freq_high) const override {
const auto mean_amplitude = (amp_low + amp_high) * 0.5f;
const auto processed_amplitude =
static_cast<u8>((mean_amplitude + std::pow(mean_amplitude, 0.3f)) * 0.5f * 0x8);
return gcadapter->RumblePlay(port, processed_amplitude);
}
private:
const u32 port;
GCAdapter::Adapter* gcadapter;
};
/// An vibration device factory that creates vibration devices from GC Adapter
GCVibrationFactory::GCVibrationFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
: adapter(std::move(adapter_)) {}
/**
* Creates a vibration device from a joystick
* @param params contains parameters for creating the device:
* - "port": the nth gcpad on the adapter
*/
std::unique_ptr<Input::VibrationDevice> GCVibrationFactory::Create(
const Common::ParamPackage& params) {
const auto port = static_cast<u32>(params.Get("port", 0));
return std::make_unique<GCVibration>(port, adapter.get());
}
} // namespace InputCommon

View File

@ -1,78 +0,0 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include "core/frontend/input.h"
#include "input_common/gcadapter/gc_adapter.h"
namespace InputCommon {
/**
* A button device factory representing a gcpad. It receives gcpad events and forward them
* to all button devices it created.
*/
class GCButtonFactory final : public Input::Factory<Input::ButtonDevice> {
public:
explicit GCButtonFactory(std::shared_ptr<GCAdapter::Adapter> adapter_);
/**
* Creates a button device from a button press
* @param params contains parameters for creating the device:
* - "code": the code of the key to bind with the button
*/
std::unique_ptr<Input::ButtonDevice> Create(const Common::ParamPackage& params) override;
Common::ParamPackage GetNextInput() const;
/// For device input configuration/polling
void BeginConfiguration();
void EndConfiguration();
bool IsPolling() const {
return polling;
}
private:
std::shared_ptr<GCAdapter::Adapter> adapter;
bool polling = false;
};
/// An analog device factory that creates analog devices from GC Adapter
class GCAnalogFactory final : public Input::Factory<Input::AnalogDevice> {
public:
explicit GCAnalogFactory(std::shared_ptr<GCAdapter::Adapter> adapter_);
std::unique_ptr<Input::AnalogDevice> Create(const Common::ParamPackage& params) override;
Common::ParamPackage GetNextInput();
/// For device input configuration/polling
void BeginConfiguration();
void EndConfiguration();
bool IsPolling() const {
return polling;
}
private:
std::shared_ptr<GCAdapter::Adapter> adapter;
int analog_x_axis = -1;
int analog_y_axis = -1;
int controller_number = -1;
bool polling = false;
};
/// A vibration device factory creates vibration devices from GC Adapter
class GCVibrationFactory final : public Input::Factory<Input::VibrationDevice> {
public:
explicit GCVibrationFactory(std::shared_ptr<GCAdapter::Adapter> adapter_);
std::unique_ptr<Input::VibrationDevice> Create(const Common::ParamPackage& params) override;
private:
std::shared_ptr<GCAdapter::Adapter> adapter;
};
} // namespace InputCommon