From 56e22e6aac513e65acfec208a5d5ba2170eceb7a Mon Sep 17 00:00:00 2001 From: Lioncash Date: Sun, 6 Dec 2015 15:11:09 -0500 Subject: [PATCH] dyncom: Remove static keyword from header functions --- src/core/arm/dyncom/arm_dyncom_run.h | 4 +-- src/core/arm/dyncom/arm_dyncom_thumb.h | 2 +- src/core/arm/skyeye_common/vfp/vfp_helper.h | 32 ++++++++++----------- 3 files changed, 19 insertions(+), 19 deletions(-) diff --git a/src/core/arm/dyncom/arm_dyncom_run.h b/src/core/arm/dyncom/arm_dyncom_run.h index 85c8d798ea..8eb694feec 100644 --- a/src/core/arm/dyncom/arm_dyncom_run.h +++ b/src/core/arm/dyncom/arm_dyncom_run.h @@ -30,7 +30,7 @@ * @return If the PC is being read, then the word-aligned PC value is returned. * If the PC is not being read, then the value stored in the register is returned. */ -static inline u32 CHECK_READ_REG15_WA(const ARMul_State* cpu, int Rn) { +inline u32 CHECK_READ_REG15_WA(const ARMul_State* cpu, int Rn) { return (Rn == 15) ? ((cpu->Reg[15] & ~0x3) + cpu->GetInstructionSize() * 2) : cpu->Reg[Rn]; } @@ -43,6 +43,6 @@ static inline u32 CHECK_READ_REG15_WA(const ARMul_State* cpu, int Rn) { * @return If the PC is being read, then the incremented PC value is returned. * If the PC is not being read, then the values stored in the register is returned. */ -static inline u32 CHECK_READ_REG15(const ARMul_State* cpu, int Rn) { +inline u32 CHECK_READ_REG15(const ARMul_State* cpu, int Rn) { return (Rn == 15) ? ((cpu->Reg[15] & ~0x1) + cpu->GetInstructionSize() * 2) : cpu->Reg[Rn]; } diff --git a/src/core/arm/dyncom/arm_dyncom_thumb.h b/src/core/arm/dyncom/arm_dyncom_thumb.h index 4479743639..c1be3c7352 100644 --- a/src/core/arm/dyncom/arm_dyncom_thumb.h +++ b/src/core/arm/dyncom/arm_dyncom_thumb.h @@ -38,7 +38,7 @@ enum class ThumbDecodeStatus { // Translates a Thumb mode instruction into its ARM equivalent. ThumbDecodeStatus TranslateThumbInstruction(u32 addr, u32 instr, u32* ainstr, u32* inst_size); -static inline u32 GetThumbInstruction(u32 instr, u32 address) { +inline u32 GetThumbInstruction(u32 instr, u32 address) { // Normally you would need to handle instruction endianness, // however, it is fixed to little-endian on the MPCore, so // there's no need to check for this beforehand. diff --git a/src/core/arm/skyeye_common/vfp/vfp_helper.h b/src/core/arm/skyeye_common/vfp/vfp_helper.h index 3358ff1d91..210972917d 100644 --- a/src/core/arm/skyeye_common/vfp/vfp_helper.h +++ b/src/core/arm/skyeye_common/vfp/vfp_helper.h @@ -85,7 +85,7 @@ enum : u32 { #define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00) -static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) +inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) { if (shift) { if (shift < 32) @@ -96,7 +96,7 @@ static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) return val; } -static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) +inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) { if (shift) { if (shift < 64) @@ -107,7 +107,7 @@ static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) return val; } -static inline u32 vfp_hi64to32jamming(u64 val) +inline u32 vfp_hi64to32jamming(u64 val) { u32 v; u32 highval = val >> 32; @@ -121,7 +121,7 @@ static inline u32 vfp_hi64to32jamming(u64 val) return v; } -static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) +inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) { *resl = nl + ml; *resh = nh + mh; @@ -129,7 +129,7 @@ static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) *resh += 1; } -static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) +inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) { *resl = nl - ml; *resh = nh - mh; @@ -137,7 +137,7 @@ static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) *resh -= 1; } -static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m) +inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m) { u32 nh, nl, mh, ml; u64 rh, rma, rmb, rl; @@ -164,20 +164,20 @@ static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m) *resh = rh; } -static inline void shift64left(u64* resh, u64* resl, u64 n) +inline void shift64left(u64* resh, u64* resl, u64 n) { *resh = n >> 63; *resl = n << 1; } -static inline u64 vfp_hi64multiply64(u64 n, u64 m) +inline u64 vfp_hi64multiply64(u64 n, u64 m) { u64 rh, rl; mul64to128(&rh, &rl, n, m); return rh | (rl != 0); } -static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) +inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) { u64 mh, ml, remh, reml, termh, terml, z; @@ -249,7 +249,7 @@ enum : u32 { VFP_SNAN = (VFP_NAN|VFP_NAN_SIGNAL) }; -static inline int vfp_single_type(const vfp_single* s) +inline int vfp_single_type(const vfp_single* s) { int type = VFP_NUMBER; if (s->exponent == 255) { @@ -271,7 +271,7 @@ static inline int vfp_single_type(const vfp_single* s) // Unpack a single-precision float. Note that this returns the magnitude // of the single-precision float mantissa with the 1. if necessary, // aligned to bit 30. -static inline void vfp_single_unpack(vfp_single* s, s32 val, u32* fpscr) +inline void vfp_single_unpack(vfp_single* s, s32 val, u32* fpscr) { s->sign = vfp_single_packed_sign(val) >> 16, s->exponent = vfp_single_packed_exponent(val); @@ -293,7 +293,7 @@ static inline void vfp_single_unpack(vfp_single* s, s32 val, u32* fpscr) // Re-pack a single-precision float. This assumes that the float is // already normalised such that the MSB is bit 30, _not_ bit 31. -static inline s32 vfp_single_pack(const vfp_single* s) +inline s32 vfp_single_pack(const vfp_single* s) { u32 val = (s->sign << 16) + (s->exponent << VFP_SINGLE_MANTISSA_BITS) + @@ -335,7 +335,7 @@ struct vfp_double { #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) -static inline int vfp_double_type(const vfp_double* s) +inline int vfp_double_type(const vfp_double* s) { int type = VFP_NUMBER; if (s->exponent == 2047) { @@ -357,7 +357,7 @@ static inline int vfp_double_type(const vfp_double* s) // Unpack a double-precision float. Note that this returns the magnitude // of the double-precision float mantissa with the 1. if necessary, // aligned to bit 62. -static inline void vfp_double_unpack(vfp_double* s, s64 val, u32* fpscr) +inline void vfp_double_unpack(vfp_double* s, s64 val, u32* fpscr) { s->sign = vfp_double_packed_sign(val) >> 48; s->exponent = vfp_double_packed_exponent(val); @@ -379,7 +379,7 @@ static inline void vfp_double_unpack(vfp_double* s, s64 val, u32* fpscr) // Re-pack a double-precision float. This assumes that the float is // already normalised such that the MSB is bit 30, _not_ bit 31. -static inline s64 vfp_double_pack(const vfp_double* s) +inline s64 vfp_double_pack(const vfp_double* s) { u64 val = ((u64)s->sign << 48) + ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + @@ -415,7 +415,7 @@ struct op { u32 flags; }; -static inline u32 fls(u32 x) +inline u32 fls(u32 x) { int r = 32;